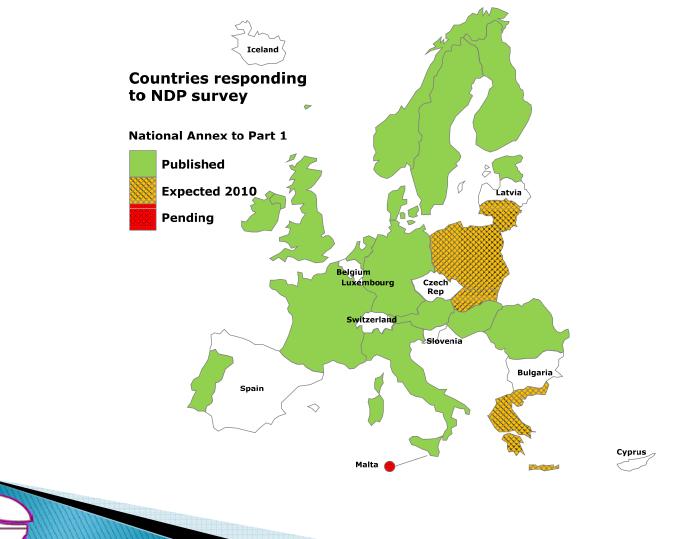
Results of the NDP Survey 2009/10 Andrew Bond

Results of the NDP Survey 2009/10

- Survey procedure
- Some unexpected results
- NDPs for slope stability
- NDPs for shallow foundations
- NDPs for deep foundations
- Accidental design situations
- Conclusions

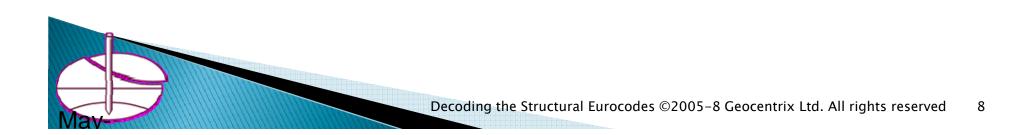

Survey procedure Results of the NDP Survey 2009/10

Spreadsheet posted on CEN LiveLink for countries to complete with their NDPs

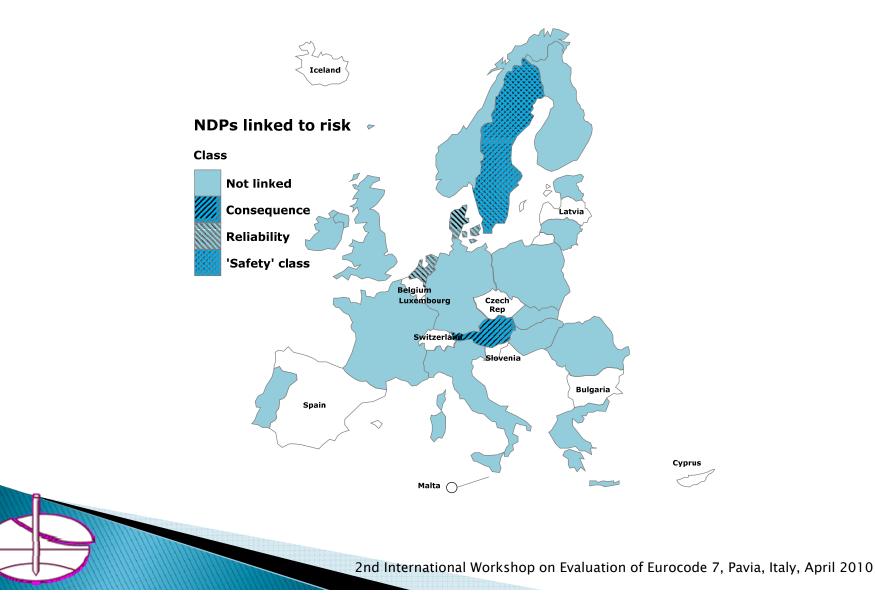
CEN TC250/SC7	1	Factors of	n action	ns					Persistent	Transient	Accidenta
2009 Survey of Nationally Determined Parameters	2								design	design	design
(1.0	3	Clause	Annex	graph/Table	Limit state			1997-1	situations	situations	situations
Please return this spreadsheet (as an attachement) to the following email address							Persistent &	ccidental	FOU	EQU	EQU
ndrew bond@geocentrix.co.uk	-	2 4 6 1(4)P	A 2(1)D	Table A 1	EQU	V5.det	1.1	d d	EQU	EUO	EQU
lease use '2009 Survey of Nationally Determined Parameters' as the subject of your email		Y. a. O. Male.	with.	Table A. I		10.00	0.9				
						Yo.sto					
structions	/					¥Q.dst		1			
Enter your country's Nationally Determined Parameters (NDPs) in the YELLOW boxes	8					VQ.stp					
Please complete all sheets (Design Approach, Action factors, Material factors, Resistance factors, Correlation factors, and Model factors)	3	2.4.6.1(4)P	A31	Table A 3	STR/GEO		Set A1 Set A2		Set A1 Set A2	Set A1 Set A2	Set A1 Set
Please enter NDPs for each design situation (Persistent, Transient, and Accidental)	1	1 2.4.0. I(4)	A.J.1	Table A.J	STRUGEO				Servi Servi	SELAT SELAZ	Ser AT Det
If your country does NOT specify the value of a particular NDP (for example a partial factor that is not used), please enter a X to indicate this	15					1.0	1.35 1				
If your country leaves the choice of the value of a particular NDP open, please enter a ? to indicate this Please indicate which sheets you have used in the boxes below and add any other comments that will help to explain your submission also below	1.	2				Yo.tav	1.5 1.3				
it measurements and a solution of the survey please contact. Andrew Bond via the email address given above.	14					Va	1.5 1.5				
a por ane any descense offering the entry, press contact estern one in the content of the rest of the rest of	14					¥0. fav	0 0	°.			1
Thank you for help!	10 16								1IPI	11P1	UPI
	17		A 4	Table A 15	UPL	Vo.dat	4		OFC	UFL	UFL
four country	18	D Train Ilak		Table PC 12	UT L		0.9				
four name	19	0				VG.sm					
/our email	20	3				YQ.det					
s the information you are giving in this survey definite or provisional?	2					YQ am	100				
a me information you are giving in this survey definite or provisional?	2	2							HYD	HYD	HYD
	22	2 4 6 1(4)P	A.5	Table A 17	HYD	V0.set	1 35	1.4			110
Additional comments	0	4	~~	TRUE PL TI	into						
	24	6						4			
	20	6				VQ.88	1.5	· ·			
	21					¥Q.885	· ·				
	23	8									
	25	9									
	30	0									
	3	1									
	33										
	34										
	34										
M Instructions / Design Approach / Action factors / Material factors / Resistance factors / I	¥ 24	0		sign Approach							

Answers received from 20 out of 30 countries, based on published or provisional NAs

Thank you to all these correspondents


Manfred Fross (Austria) Carsten Sorensen (Denmark) Lea Tuberik (Estonia) Tim Länsivaara (Finland) Roger Frank (France) Bernd Schuppener (Germany) Michael Kavvadas (Greece) Robert Szepesházi (Hungary) Trevor Orr (Ireland) Liudvikas Furmonavicius (Lithuania) Giuseppe Scarpelli (Italy) Adriaan van Seters (Netherlands) Fritz Nowacki/Roald Sægrov (Norway) Marek Świeca/Agnieszka Gawryluk (Poland) lacint Manoliu (Romania) Rui Correia (Portugal) Lovisa Moritz (Sweden) Brian Simpson (UK)

Some unexpected results Results of the NDP Survey 2009/10



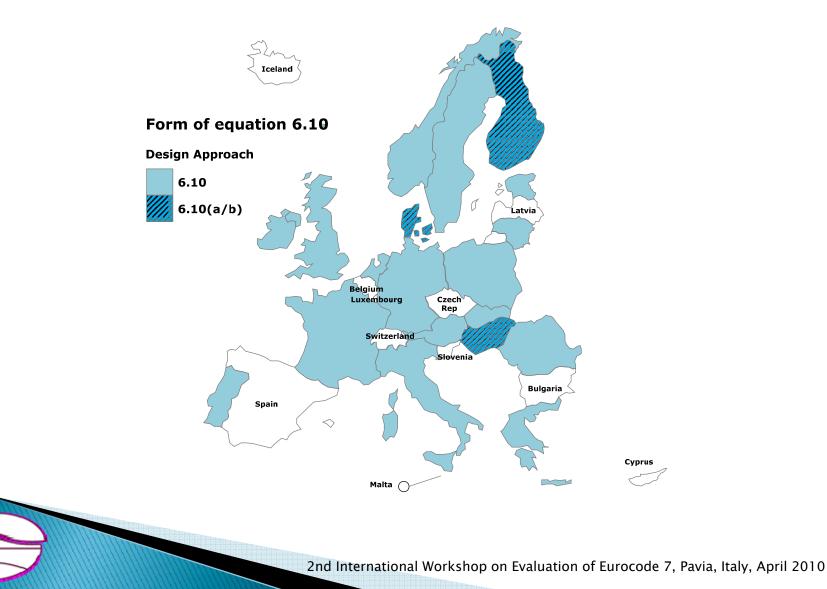
Reliability discrimination via consequence or reliability classes

Consequence or reliability		scription of nsequence	Examples		num β ues	K _{FI}
class	For human life	Economic, social, or environmental		1 year	50 years	
CC1/RC1	Low	Small or negligible	Agricultural (e.g. storage) buildings, greenhouses	4.2	3.3	0.9
CC2/RC2	Medium	Considerable	Residential and office buildings	4.7	3.8	1.0
CC3/RC3	High	Very great	Grandstands, public buildings (e.g. concert hall)	5.2	4.3	1.1

Countries linking NDPs to risk

Two ways of assessing fundamental combinations of actions for STR/GEO

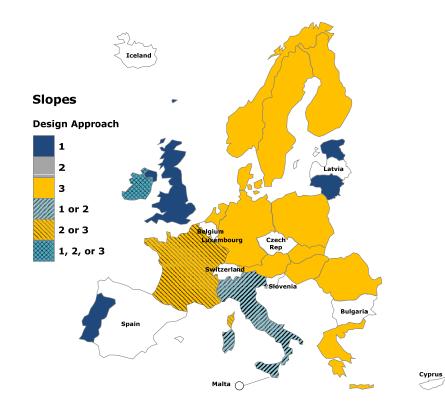
Single verification using Eq. 6.10 from EN 1990:


$$\sum_{j\geq 1} \gamma_{G,j} G_{k,j} + \gamma_{Q,1} Q_{k,1} + \sum_{i>1} \gamma_{Q,i} \psi_{0,i} Q_{k,i}$$

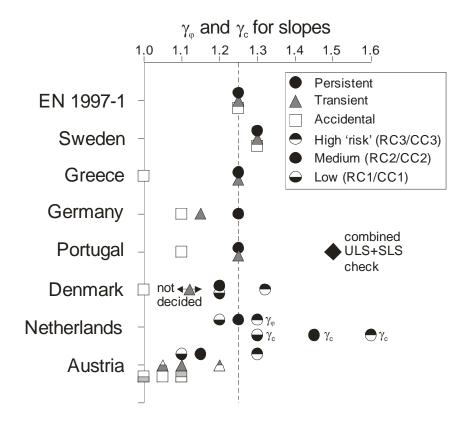
or, less favourable of Eq. 6.10(a) and (b):

$$\sum_{j\geq 1} \gamma_{G,j} G_{k,j} + \gamma_{Q,i} \psi_{0,1} Q_{k,1} + \sum_{i>1} \gamma_{Q,i} \psi_{0,i} Q_{k,i}$$
$$\sum_{j\geq 1} \xi_j \gamma_{G,j} G_{k,j} + \gamma_{Q,1} Q_{k,1} + \sum_{i>1} \gamma_{Q,i} \psi_{0,i} Q_{k,i}$$

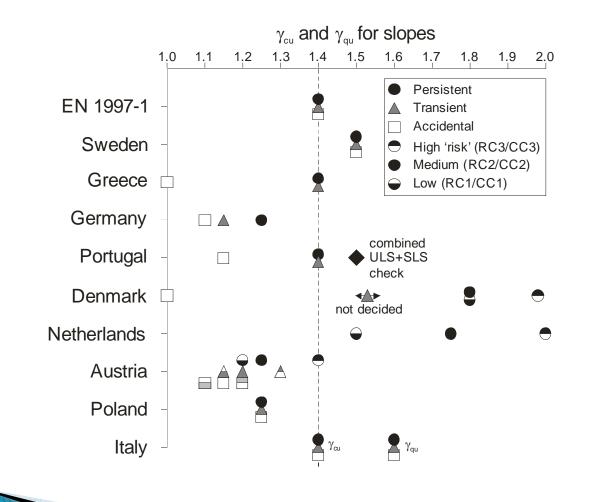
where the circled terms reduce the effect of the corresponding action


Preferred form of Equation 6.10

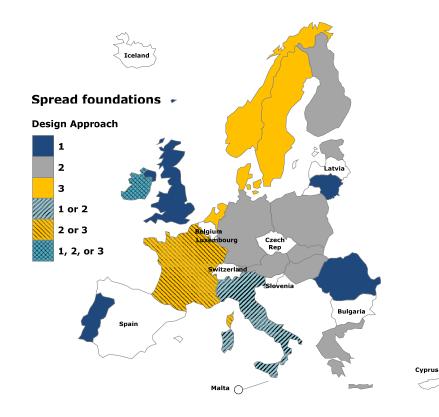
NDPs for slope stability Results of the NDP Survey 2009/10



Design Approaches allowed for design of slopes


Design	Appro	aches allowed
DA1	DA2	DA3
EST IRL ITA LTU PRT UK (6)	FRA IRL ITA (3)	AUT, DNK, FRA, FIN, DEU, GRC, HUN, IRL, NLD, NOR, POL, ROM, SVK, SWE (14)

Material factors for drained slopes


Material factors for undrained slopes

NDPs for shallow foundations Results of the NDP Survey 2009/10

Design Approaches allowed for design of spread foundations

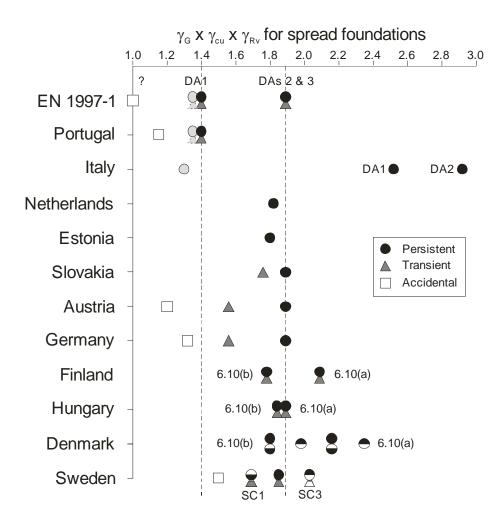
Design	Approaches allowe	ed
DA1	DA2	DA3
IRL ITA LTU PRT ROM UK (6)	AUT, EST, FIN, FRA, DEU, GRC, HUN, IRL, ITA, POL, SVK (11)	DNK, FRA, IRL, NLD, NOR, SWE (6)

How can we compare partial factors used to verify STR/GEO for spread foundations?

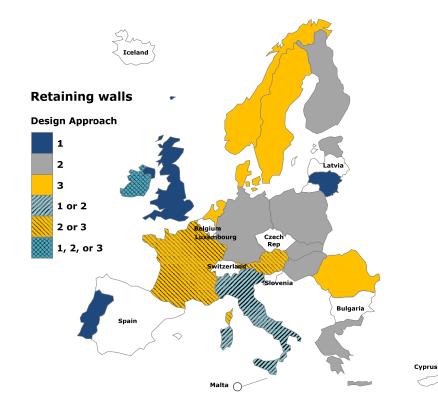
In Design Approach 1, check two combinations of:

$$E\left\{\gamma_{F}F_{rep}, X_{k}/\gamma_{M}, a_{d}\right\} \leq R\left\{\gamma_{F}F_{rep}, X_{k}(\gamma_{M}, a_{d})\right\}$$

In Design Approach 2, check one combination: $\gamma_F E\{F_{rep}, X_k, a_d\} \le R\{F_{rep}, X_k, a_d\}$


In Design Approach 3, check one combination:

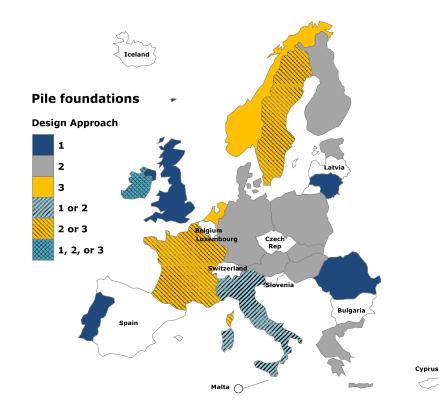
$$E\left\{\gamma_{F}F_{rep}, X_{k}/\gamma_{M}, a_{d}\right\} \leq R\left\{\gamma_{F}F_{rep}, X_{k}\gamma_{M}a_{d}\right\}/\gamma_{R}$$


One measure of required reliability is:

$$\gamma_G \times \gamma_{cu} \times \gamma_{Rv}$$

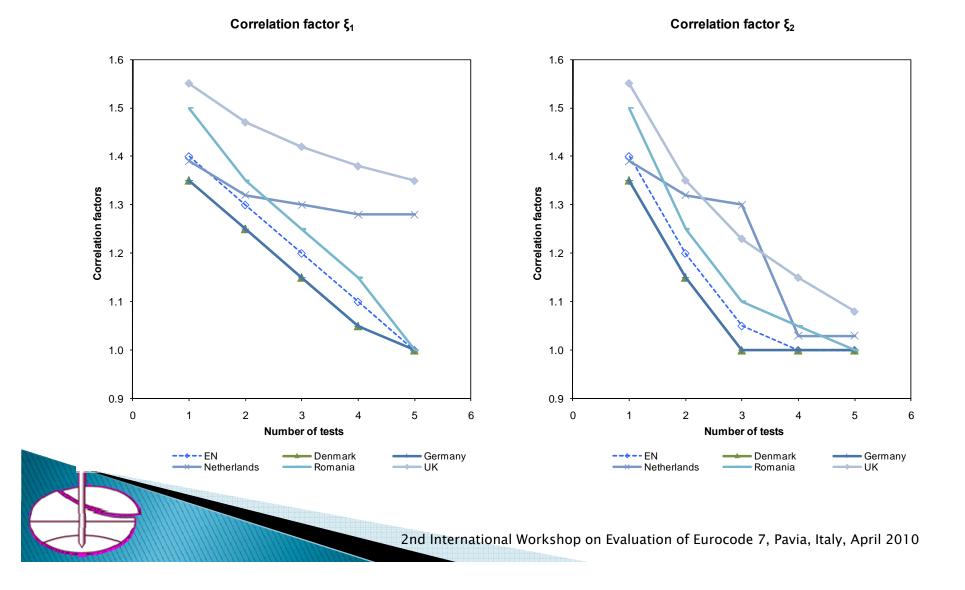
Combined partial factors for undrained design of spread foundations

Design Approaches allowed for design of retaining walls

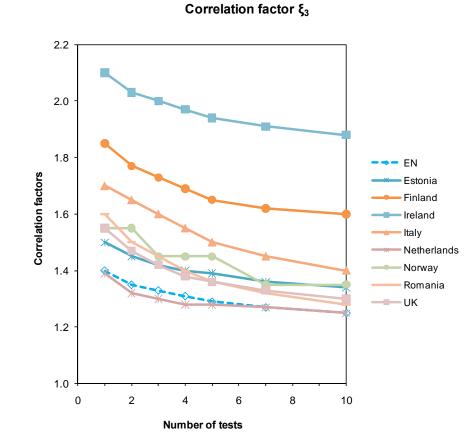


Design	Approaches allowe	d				
DA1	DA2	DA3				
IRL ITA LTU PRT ROM UK (6)	AUT, EST, FIN, FRA, DEU, GRC, HUN, IRL, ITA, POL, SVK (11)	AUT*, DNK, FRA, IRL, NLD, NOR, SWE (7)				
*for numerical analysis						

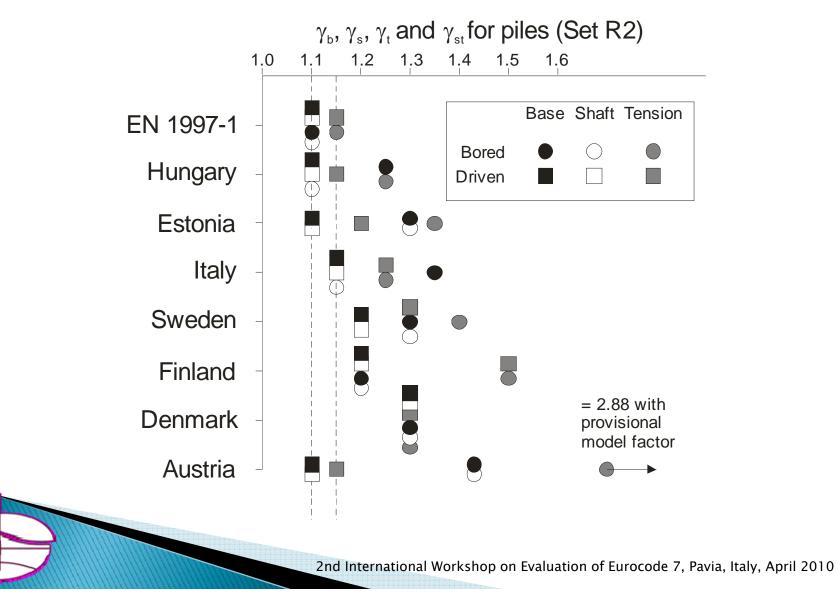
NDPs for deep foundations Results of the NDP Survey 2009/10

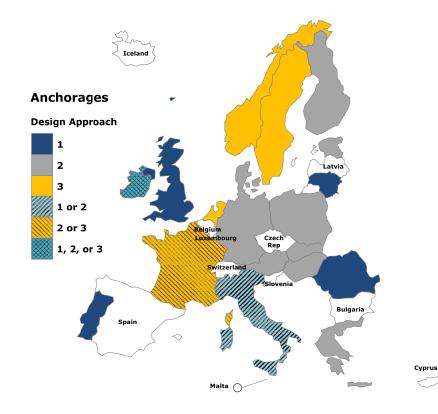


Design Approaches allowed for design of pile foundations



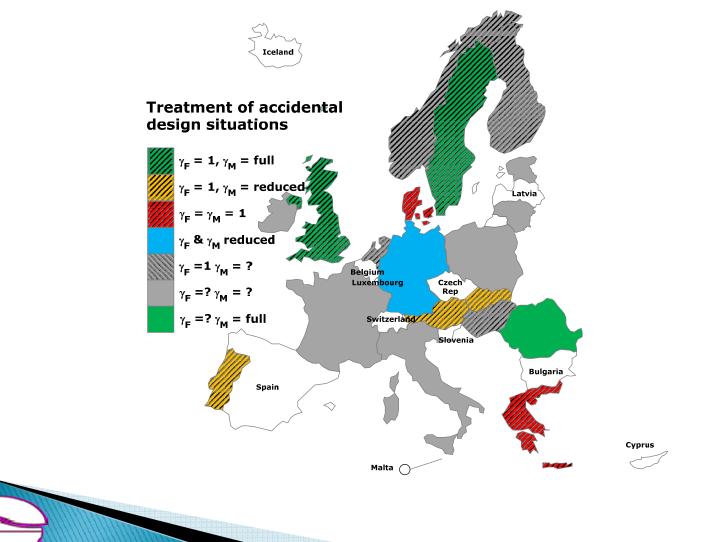
Design	Approaches allowe	d
DA1	DA2	DA3
IRL ITA LTU PRT ROM UK (6)	AUT, EST, FIN, FRA, DEU, GRC, HUN, IRL, ITA, POL, SVK, SWE (12)	DNK, FRA, IRL, NLD, NOR, SWE (6)


Correlation factors for static load test results (ξ_1 applied to mean; ξ_2 applied to minimum)


Correlation factors for ground test results (ξ_3 applied to mean)

Partial resistance factors for design of pile foundations with Design Approach 2 (Set R2)

Design Approaches allowed for design of anchorages



Design	Approaches allowe	d
DA1	DA2	DA3
IRL ITA LTU PRT ROM UK (6)	AUT, EST, FIN, FRA, DEU, GRC, HUN, IRL, ITA, POL, SVK (11)	DNK, FRA, IRL, NLD, NOR, SWE (6)

Accidental design situations Results of the NDP Survey 2009/10

Treatment of accidental design situations: which partial factors are set to 1.0?

Conclusion Results of the NDP Survey 2009/10

Some observations on the NDP Survey results

Enormous variation in values of NDPs

Does this prevent further harmonization of national practice?

Why have countries felt the need to change so many NDPs from their recommended values?

Did we get the recommended values wrong?

Several countries have 'refined' their NDPs

Different values used for different levels of risk (e.g. CC, RC, 'safety class', amount of pile testing)

Should Eurocode 7 provide better coverage of this idea?

What other ideas from different countries 'NAs should be 'promoted' to the EN?

Complexity is growing (which is NOT desirable)

How can we simplify to make the important ideas accessible to practicing engineers?

Suggestions for future research

Variation of partial factors with:

Design situation (Persistent > Transient > Accidental) Risk (RC3/CC3 > RC2/CC2 > RC1/CC1)

Less onerous combination of actions:

Explicit consideration of equations 6.10(a) and (b) from EN 1990

Partial factors for use in accidental design situations:

Factors on actions = 1.0?

Factors on material properties/resistance > 1.0

Correlation factors for pile design

Why have these factors been increased by such a large amount? Do we need different factors for different ground tests?

Partial factors for combined SLS+ULS check

Combine Design Approaches into one simpler scheme

Next phase of the NDP Survey

	A	В	С	D	E	F	G	н	Ĩ	J	К	
1	Denmark											
2	Spread foundations											
3	Limit states STR/GEO											
4	Design approach(es) allowed	DA3										
5	Partial factor sets	A1/A2+M2+	R3									
G							ign situat					
7				Persisten			Transient			Accidenta		
8			CC3/RC3	CC2/RC2	CC1/RC1	CC3/RC3	CC2/RC2	CC1/RC1	CC3/RC3	CC2/RC2	CC1/RC1	
9	Unfavourable permanent actions	γG		,								
10	Structural	Eq 6.10	1.00	n/a 1.2	1.2					1 n/a		
11		Eq 6.10(a) Eq 6.10(b)	1.32 1.1	1.2	1.2 1					n/a n/a		
12 13		Ed 0.10(D)	1.1	1	1					n/a		-
	Geotechnical	Eq 6.10		n/a			?			as above		
15		Eq 6.10(a)	1.1	1	1		1.1					
16		Eq 6.10(b)	1.1	1	1							
17												
18	Water	Eq 6.10		as above						as above		
19		Eq 6.10(a)										
20		Eq 6.10(b)										
21												
		γG,fav										
23	Structural	Eq 6.10		n/a						1		
24		Eq 6.10(a)	1	1	1 0.9					n/a		
25 26		Eq 6.10(b)	0.9	0.9	0.9					n/a		
20 27	Geotechnical	Eq 6.10		n/a			?			as above		
27	Geolecimicar	Eq 6.10(a)	1	1	1					as above		
29		Eq 6.10(a)	1	1	1							
30												
31	Water	Eq 6.10		as above						as above		
32		Eq 6.10(a)										
33		Eq 6.10(b)										
34												
35	Variable actions	7 Q										
36		Eq 6.10		n/a						1		
37		Eq 6.10(a)	0	0	0		?			n/a		
38	N AllT-spread DNK-spread	Eq 6.10(b)	1.65	1.5	1.5 Alennead					n/a		

Previous NDP survey ('09/10)

- Questions unanswered
- Questions unasked
- Ambiguities
- NAs not finalised
- 10 countries did not answer

New NDP survey (2010/11)

- Existing answers already included
- NSBs will be asked to correct the mistakes and 'fill in the gaps'